Growth Response and Amylolytic Activity of two Aspergillus species isolated from Artemisia annua L. Plantation Soils

A.I. Ogbonna, F.C. Onwuliri and C.I.C. Ogbonna
Dept. of Plant Science and Technology, Faculty of Natural Science, University of Jos, Nigeria
ogbonabi@yahoo.co.uk*; +2348033555188

Abstract

Studies were carried out on the species of fungi associated with soils of decomposing Artemisia annua L. process waste in an A. annua plantation in Gangnum, Langtang South Local Government Area of Plateau State, Nigeria. The fungal isolates from the soils surrounding the decomposing wastes included Aspergillus fumigatus, A. niger, A. terreus, Cladosporium cladosporioides, Penicillium chrysogenum and P. citrinum. Two of the isolates, A. niger and A. terreus which had high frequencies of occurrence were assessed for their growth rates over an incubation period of 168 h using Czapek-Dox and Sabouraud Dextrose Agar media. Also, their abilities to produce glucoamylase of biotechnological importance using submerged fermentation were studied. The two isolates were grown in modified basal medium containing starch as sole source of carbon and were harvested at 24 h intervals over a period of 168 h. The two test fungi grew well on both media as the diameters of the colonies increased progressively. Aspergillus niger was found to have colony diameter of 5.2 cm by the 7th day of incubation while that of A. terreus was 5 cm on the same 7th day of incubation. The highest glucoamylase potential at pH 5.03 was demonstrated by A. terreus on the 6th day of incubation, with peak enzyme activity of 0.375 mmolL⁻¹ while that of A. niger was 0.281 mmolL⁻¹ on the same 6th day of incubation. These two fungal species could be useful in the degradation of biological wastes.

Keywords: Artemisia annua, Aspergillus niger, Aspergillus terreus, glucoamylase, degradation, biological wastes.

Introduction

Fungi have proven to be an important source of industrial enzymes and due to their diversity, they have been recognized as source of enzymes with useful and/or novel characteristics (Pointing and Hyde, 2000; Bakri et al., 2009). Glucoamylase (GA) is a hydrolyzing enzyme and which can degrade amylase and amylopectin by hydrolyzing both α-1,4 and α-1,6 glucosidic links of starch to produce glucose (Elegado and Fujio, 1993; Pandey et al., 2000). Hence, glucoamylase can convert starch completely to glucose and have found applications in many industries (Soccol et al., 1992; Pandey et al., 2000; Dekker, 2003). It is used for the production of glucose and fructose syrups from liquefied starch (Nguyen et al., 2002). It is also employed in baking, juice and beverage making, pharmaceuticals and numerous fermented food production industries (Haki and Rakshith, 2003), textile, leather, paper, detergents industries and bioconversion of solid wastes (Mukunda et al., 2012). Due to its increasing demand, the production technique of glucoamylase and α-amylase has been studied extensively. Amylase production has been reported from several fungi, yeasts, bacteria and actinomycetes isolated from natural habitat such as soil and organic wastes. Soil provides a heterogeneous and complex environment for all soil inhabitants (Gupta et al., 2003).

Among the large number of filamentous fungi capable of producing useful enzymes, the genus Aspergillus are particularly interesting due to their ease of cultivation, feasibility of mass culture and ease of genetic manipulation. They are also known for high production of extracellular enzymes with potential industrial exploitation. In this study, an attempt has been made to screen the indigenously isolated Aspergillus species from soil of Artemisia annua L. plantation for amylase production which could be employed in biodegradation of A. annua process waste in the plantation. The biodegradation process could help in the reduction of spontaneous fire outbreak as well as to enrich the humus content of the plantation soil.

Materials and methods

Isolation of fungi from soil: Fungal colonies were isolated from soil samples collected from Artemisia annua plantation soil enriched for amylase producing microorganisms by soil plate method described by Warcup (1950) using Potato Dextrose Agar medium. The inoculated Petridishes were incubated at 25±2°C for 5 days. The isolates were maintained on Potato Dextrose Agar slants supplemented with 0.5 mL gentamycin (40 mg/mL) in order to suppress the growth of bacteria and were kept at 4°C.

©Youth Education and Research Trust (YERT)

jairjp.com

Ogbonna et al., 2015
Based on the frequency of occurrence of the fungal isolates, two fungal species were selected for further studies.

Growth rate studies: In performing growth rate studies on the isolates, colony diameter and mycelia weight measurements were used.

Colony diameter measurement: For the estimation of colony diameter of the fungal isolates, modified method of Nwodo et al. (2010) was employed. A sterile cork borer of pore size of 5.0 mm dia was used to bore a hole enclosing a disc of the pure culture of the respective pure fungus maintained on PDA plates. One disc of each fungus was aseptically transferred and placed at the center of sterile, freshly prepared Sabouraud and Czapek-Dox agar plates. This experiment was done in triplicates. The average dia of the growing colonies were measured at intervals of 24 for 120 h using a calibrated transparent ruler and the values were recorded.

Mycelia weight measurement: Modified method of Nwodo et al. (2010) was used for the mycelia weight measurement. Conidia of each of the fungus were harvested using sterile cork borer and three discs transferred into a sterile test tube and diluted with equal volume of sterile distilled water. The content of the test tube was agitated vigorously to form a homogenous mixture. One milliliter of the spore suspension was inoculated unto Petri dishes containing already prepared Potato Dextrose agar medium. Seven Petri dishes were used for each of the isolates and were done in triplicates. The Petri dishes were incubated in the dark at 25°C without agitation. Cultures were harvested at 24 h intervals over a 168 h period. A set of each replicate was removed at 24 h interval, the mycelia washed and dried in the oven at 80°C for 2 h and carefully weighed. The average weight increase of mycelia per day was recorded.

Enzyme assay on the selected fungal isolates

Preliminary screening for amylase production using plate assay: Preliminary screening was done using the modified method of Carrim et al. (2006) by inoculating 5 mm mycelia discs from the edge of an actively growing 4-day old fungal isolate on starch agar (containing peptone, 1%; KH₂PO₄, 0.5%; agar 2% and 1% (w/v) starch (HiMedia) which served as the carbon source. The medium was supplemented with 0.5 mL gentamycin (40 mg/mL) to suppress bacterial growth. The starch agar plates were incubated at 25°C for 4 days after which they were flooded with Lugol’s iodine solution (Iodide, 0.2 g. Potassium iodide, 0.4 g. Distilled water, 100 mL) for 2 min. Control experiment was also set up using basal salt agar plates without the inducing substrate (starch). The plates were observed for a clear zone of hydrolyzed starch against a blue background of unhydrolyzed starch. The experiment was replicated thrice.

The diameters of the clear zones were measured and the means were recorded as the measure of amylase activity.

Secondary screening for amylase production by submerged fermentation: For the enzyme assay, modified method of Nelson (1944) and Somogyi (1952) as described by Maria et al. (2005) was adopted. The pure cultures of each fungus were grown in separate 250 mL Erlenmeyer flask containing 100 mL of production medium (NH₄NO₃, 1%; KH₂PO₄, 0.2%; MgSO₄.7H₂O, 0.2%; FeSO₄.7H₂O, 0.001% and soluble starch, 2%; pH 6.0) and incubated at 25°C for 5 days under static condition. Enzyme activity was assessed at 3, 6, and 9 day intervals using cell free culture filtrate of each of organisms. Boiled enzyme extracts was used as blank and D-glucose as standard. The glucose concentration was determined by DNS method, as described by Miller (1959). The color developed was measured at 625 nm using Jenway spectrophotometer. The experiment was done in triplicates.

Effects of nitrogen source on the concentration of reducing sugar produced: In addition further investigation was carried out using starch medium supplemented with 1% Yeast extract using modified method of Suganthi et al. (2011) to determine the effect on the concentration of reducing sugar produced. For the enzyme assay, 100 mL of basal medium already containing 1% starch was prepared in six (6) 250 mL Erlenmeyer flasks. A volume of 1% yeast extract was added to the medium. A weight of 5 mm mycelial plugs of the test fungi (A. niger and A. terreus) were inoculated respectively. The flasks were incubated at 25°C for 9 days under static condition. Enzyme activity was assessed at 3, 6 and 9 day intervals using cell free culture filtrate of each of organisms. Boiled enzyme extracts was used as blank and D-glucose as standard. The glucose concentration was determined by DNS method as described by Miller (1959). The color developed was measured at 625 nm using Jenway spectrophotometer. The experiment was done in triplicates.

Results

Isolation of fungi from soil: Six different fungal isolates differentiated on the basis of cultural and morphological characteristics were obtained after incubation. The isolates were further inoculated on sterile PDA plates by point inoculation and incubated at 25±2°C for 5 days in order to obtain pure fungal colonies. The isolates were identified as Aspergillus fumigatus, A. niger, A. terreus, Cladosporium cladosporioides, Penicillium chrysogenum and P. citrinum using standard identification manuals (Barnett and Hunter, 1972; Samson et al., 1984). Details of these isolated fungal structures are presented in Table 1. The fungal isolates are shown in Figs. 1-6.
Table 1. Cultural and morphological characteristics of the fungal isolates.

<table>
<thead>
<tr>
<th>Organism identified</th>
<th>Hyphae</th>
<th>Cultural characteristics</th>
<th>Sporulating structure</th>
<th>Morphology of conidiophore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus fumigatus</td>
<td>Septate</td>
<td>At first white, then bluish-green to gray, very powdery due to massive conidia production</td>
<td>Conidiophore terminated in dome shaped vesicle. Uniserial, Conidia borne on the phialides, only on upper two-thirds of vesicle</td>
<td>Conidiophores short and smooth</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>Septate</td>
<td>Mycelia whitish at first and then sometimes with yellow margins. Turns black and powdery due to conidia production.</td>
<td>Bisseriatephialides covers the entire globose vesicle to form a radiate head</td>
<td>Conidiophore smooth or finely roughened</td>
</tr>
<tr>
<td>Aspergillus terreus</td>
<td>Septate</td>
<td>Orange-brown or Brown with age. Reverse is light brown.</td>
<td>Conidiophores short and smooth</td>
<td></td>
</tr>
<tr>
<td>Cladosporium cladosporioides</td>
<td>Septate</td>
<td>Grayish to olivaceous-brown. Velvety, powdery with age due to abundant conidia</td>
<td>Conidia is ellipsoidal or lemon-shaped. Ramoconidia present at base of conidial chain</td>
<td>Conidiophores are long and smooth, without sympodial elongations and swellings</td>
</tr>
<tr>
<td>Penicillium chrysogenum</td>
<td>Septate</td>
<td>Whitish at first then turns pale green blue</td>
<td>Phialides flask-shaped, bearing subglobose smooth conidia</td>
<td>Conidiophores up to four stage branched, smooth-walled. Have secondary sterigmata</td>
</tr>
<tr>
<td>Penicillium citrinum</td>
<td>Septate</td>
<td>Blue green in color, leathery</td>
<td>Conidia smooth walled produced in columns</td>
<td>Conidiophores smooth</td>
</tr>
</tbody>
</table>

Fig. 1a. Colony of *Aspergillus fumigatus* on PDA; b. Structure showing the conidigenous cells (X100).

Fig. 2a. Colony of *A. niger* on PDA; b. Structure showing the conidiophore and the conidial head (X100).
Fig. 3a. Colony of *A. terreus* on PDA; b. Structure showing the conidiophore and the conidial head (X100).

Fig. 4a. Colony of *Penicillium chrysogenum* on PDA; b. Structure showing branched conidiophores, stipe and the conidial head (X100).

Fig. 4a. Colony of *Cladosporium cladosporioides* on PDA; b. Structure showing the conidiophores, conidia and ramiconidia (X100).

Fig. 5a. Colony of *Penicillium citrinum* on PDA; b. Structure showing one stage branched conidiophores, stipe and the conidial head (X100).
Growth rate studies

Colony diameter measurement: The media (Sabouraud Dextrose agar and Czaek-Dox Agar) used for the growth rate studies on the test fungi were found to have supported their growth. The test fungi grew rapidly on both media. The fastest growth on the Sabouraud Dextrose agar was obtained for *A. niger* that initiated growth within 24 h of incubation with colony diameter of 1.2 cm and recorded colony dia of 5 cm by the 7th day of incubation. Initiation of growth on Czapek-Dox agar medium was observed in *A. niger* after 48 h. However, *A. terreus* initiated growth on both media (SDA and CZA) on the second day (48 h) of incubation with colony diameter of 1.5 cm on SDA and 1.0 cm on CZA, attaining 5 cm after 7 days incubation period on SDA and 4.0 cm on CZA (Fig. 7a and b).

Mycelia weight measurement: The mycelia weights of the culture filtrates of the isolates harvested at 24 h intervals over a period of 168 h as shown in Fig. 8 indicated that there was increase in the mycelia weight of the isolates within the first 24 h which increased progressively until the 5th day (120 h) that was observed as peak (2.5 mg/mL) for *Aspergillus terreus* and the mycelia weight then declined. *Aspergillus niger* had its peak (3 mg/mL) on the 6th day (144 h) and the mycelia weight then declined afterwards.

Preliminary screening for amylase production

Amylolytic activity of the test fungal isolates using plate assay: Amylolytic activities of the selected fungal isolates on the soluble starch agar were depicted by the presence of halo zones of clearing of the soluble starch agar after flooding with Lugol’s iodine. *Aspergillus niger* was the best hydrolyzer of the soluble starch with highest zone of clearing of 55 mm and was grouped as strongly amylolytic (+++), *A. terreus* with zones of clearing of 43 mm was grouped as moderately amylolytic. The details of the results are shown in Table 2. The analysis of variance showed that there were significant differences (P ≤ 0.05) in the amylolytic activities of the fungi tested.

Secondary screening for amylase production: The test fungi demonstrated enzyme activity on the basal medium containing soluble starch substrate as sole carbon source. The highest glucoamylase (amylolytic) potential at pH 5.03 was demonstrated by *A. terreus* and then followed by *A. niger* with peak enzyme activity (0.375 mmol/L and 0.281 mmol/L) respectively on the 6th day of incubation as shown in Fig. 9.

Effect of nitrogen source on the concentration of reducing sugar produced: Nitrogen sources have a great effect for microbial growth and in the production of extra cellular enzymes. The optimum fungal growth as well as glucoamylase production was found in the mixture of starch and yeast extract as nitrogen source for the 9 days of incubation. The highest enzyme liberation at pH 5.92 was observed for *A. terreus* with peak enzyme activity of 0.756 mmol/L on the 9th day of incubation. *Aspergillus niger* had its peak enzyme activity of 0.394 mmol/L on the 6th day of incubation (Fig. 10).
The increase in the mycelia weight shows that the medium supports the growth of the organisms but at different rates which was depicted by the different peaks values observed in the fungi studied. The mycelia weight after reaching the peak value in both organisms declined steadily (Fig. 8). This is not surprising since there was no inflow of nutrients into the culture medium throughout the period of incubation. The result of this study is similar to the findings of Nwodo et al. (2010) in their work on assessment of growth and cellulase production of wild-type microfungi.

Screening of the fungal isolates for amylase production was carried out in starch agar plates followed by iodine test. The two test fungi, *A. niger* and *A. terreus* showed maximum hydrolysis zone but *A. niger* had the highest zone of hydrolysis of 55 mm (Table 2). *Aspergillus niger* has been known as a good hydrolyzer of starch (Ali et al., 1998; Jahir and Sachin, 2011). The test fungi demonstrated enzyme activity in submerged fermentation (SmF). The fungi utilized the media for its growth and secreted various secondary metabolites including amylases into the medium. The enzyme quantity expected to increase with increase in fungal growth within the period of incubation. The crude extract from media was therefore harvested at the interval of 3 days up to 9 days. The cultivation time allowed maximum growth of fungi and product formation to a certain degree in a fermentation broth. The results revealed increasing trend of enzyme activity for both tested fungal isolates up to the 6th day of incubation and then decline as shown in Fig. 3. This could be as a result of increase in concentration of certain toxic wastes and depletion of nutrients in fermentation media which leads to decreased fungal biomass and enzymes production. It could also be as a result of high viscosity of the fermentation medium, which decreases the oxygen supply to the microorganisms. High viscosity leads to retardation in cell division, resulted in low production and metabolism and amylase production. It is pertinent to note that *A. terreus* producing 0.375 mmolL−1 demonstrated greater potential in the production of glucoamylase than *A. niger* with 0.281 mmolL−1 in submerged fermentation (Fig. 9). However, *A. niger* performed better during the plate assay with halo zone of 55 mm diameter against *A. terreus* with halo zone of 43 mm dia (Table 2). Ali et al. (1989) reported *A. terreus* cultured on rice bran as a good producer of amyloglucosidase. Amylase enzyme production has been reported in *Aspergillus* species including *A. niger* by several authors (Sani et al., 1992; Gomes et al., 2005; Gupta et al., 2008; Morya and Yadav, 2009). The effect of yeast extract as nitrogen source on enzyme production was studied and it was observed that the nitrogen sources had a great effect for microbial growth and in the production of extra cellular enzymes. The growth and concentration of the enzyme liberated had a significant increase when starch and yeast extract were used in combination than when starch was used.

Discussion

Fungal strains were isolated from soils enriched for amylase producing microorganisms using soil plate method. Among these *Aspergillus* species especially *Aspergillus niger* was found to be frequently isolated. *Aspergillus niger* and *A. terreus* were recorded from all the soil samples. Their common occurrence could possibly be due to their high sporulating nature and also coupled with their ability to grow well and fastidiously on laboratory media (Oyeyiola and Hussein, 1992). The growth of the organisms on different media (Sabouraud agar and Czapek-Dox agar) shows the versatility of the organisms to utilize different carbohydrate sources. However, these organisms utilized the carbon sources at different rates as indicated by their different rates of growth (Fig. 7a and b). Nwodo-Chinedu et al. (2005) reported that *A. niger*, belong to the genus *Aspergillus* which has been documented as source of the most prevalent airborne fungi.

![Fig. 9. Amylolytic activities by *A. niger* and *A. terreus* over a period of 9 days.](image1)

![Fig. 10. Effect of yeast extract on amylolytic activity by *A. niger* and *A. terreus* over a period of 9 days.](image2)
separately (Fig. 10). Nitrogen sources have a great effect for microbial growth and in the production of extra cellular enzymes (Nahar et al., 2008; Padmavathi et al., 2012).

Acknowledgements
Authors are indebted to the Applied Microbiology unit of Department of Plant Science and Technology University of Jos for providing the facilities used in carrying out the research work. The authors are also grateful to Jummal T. Shurkuk for the technical assistance she offered. Our thanks also go to P.O. Nwadiaro and A. Chuku for their assistance in the identification of the fungal isolates. We also appreciate A.I. Onyimba who helped in the analysis of the results.

References